Dystroglycan Organizes Axon Guidance Cue Localization and Axonal Pathfinding
نویسندگان
چکیده
Precise patterning of axon guidance cue distribution is critical for nervous system development. Using a murine forward genetic screen for novel determinants of axon guidance, we identified B3gnt1 and ISPD as required for the glycosylation of dystroglycan in vivo. Analysis of B3gnt1, ISPD, and dystroglycan mutant mice revealed a critical role for glycosylated dystroglycan in the development of several longitudinal axon tracts. Remarkably, the axonal guidance defects observed in B3gnt1, ISPD, and dystroglycan mutants resemble several of the axon guidance defects found in mice lacking the axon guidance cue Slit and its receptor Robo. This similarity is explained by our observations that dystroglycan binds directly to Slit and is required for proper Slit localization within the basement membrane and floor plate in vivo. These findings establish a novel role for glycosylated dystroglycan as a key determinant of axon guidance cue distribution and function in the mammalian nervous system.
منابع مشابه
IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories.
RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAs that are locally translated and have roles in axon pathfinding. However, the RNA-binding proteins involved in axon pathfinding, and their corres...
متن کاملType III neuregulin 1 regulates pathfinding of sensory axons in the developing spinal cord and periphery.
Sensory axons must develop appropriate connections with both central and peripheral targets. Whereas the peripheral cues have provided a classic model for neuron survival and guidance, less is known about the central cues or the coordination of central and peripheral connectivity. Here we find that type III Nrg1, in addition to its known effect on neuron survival, regulates axon pathfinding. In...
متن کاملSoluble adenylyl cyclase is not required for axon guidance to netrin-1.
During development, axons are directed to their targets by extracellular guidance cues. The axonal response to the guidance cue netrin-1 is profoundly influenced by the concentration of cAMP within the growth cone. In some cases, cAMP affects the sensitivity of the growth cone to netrin-1, whereas in others it changes the response to netrin-1 from attraction to repulsion. The effects of cAMP on...
متن کاملLocalization of the netrin guidance receptor, DCC, in the developing peripheral and enteric nervous systems
Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing...
متن کاملSonic hedgehog is indirectly required for intraretinal axon pathfinding by regulating chemokine expression in the optic stalk.
Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 76 شماره
صفحات -
تاریخ انتشار 2012